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Abstract
The BC-type Calogero–Sutherland model (CSM) is an integrable extension
of the ordinary A-type CSM that possesses a reflection symmetry point. The
BC-CSM is related to the chiral classes of random matrix ensembles (RMEs)
in exactly the same way as the A-CSM is related to the Dyson classes. We
first develop the fermionic replica σ -model formalism suitable to treat all
chiral RMEs. By exploiting ‘generalized colour–flavour transformation’ we
then extend the method to find the exact asymptotics of the BC-CSM density
profile. Consistency of our result with the c = 1 Gaussian conformal field
theory description is verified. The emerging Friedel oscillations structure and
sum rules are discussed in details. We also compute the distribution of the
particle nearest to the reflection point.

PACS numbers: 71.10.Pm, 05.40.−a, 02.20.Ik, 11.25.Hf

To the memory of Professor Sung-Kil Yang

1. Introduction

It is a well-known fact that there is an intimate relationship between the one-dimensional
quantum problem with the inverse-square interaction potential, i.e. Calogero–Sutherland
model (CSM) [1, 2], and Dyson random matrix ensembles (RMEs) [3]. On the most elementary
level the correspondence goes as follows: for the three particular values of the coupling
constant (λ = 1/2, 1, 2) square of the many-body ground-state wavefunction of the CSM
coincides with the joint probability distribution (JPD) of RMEs with Dyson index β = 2λ.
Consequently, knowledge of the RME correlation functions may be immediately translated
to information about the CSM. Historically this correspondence proved to be very fruitful for
advancing the understanding of the CSM.
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It was later realized that Dyson’s classification of the RMEs was not exhaustive. Studies
of the two-sublattice model, mesoscopic transport and QCD Dirac spectra initiated the
introduction of their ‘chiral’ counterparts [4–8]. Subsequently, based on Cartan’s classification
of Riemannian symmetric spaces, Altland and Zirnbauer [9–11] have further added six
‘superconducting’ chiral symmetry classes. These chiral classes are characterized by the
special role played by the zero energy. Namely, there is a certain number of eigenvalues that
must have zero energy, while all other eigenvalues occur in symmetric pairs (mirror images)
around zero. As a result, the mean density of states (DoS) exhibits either a hollow or a bump
around the zero energy followed by decaying oscillations at larger distances. Such a structure
on the level of the mean DoS does not show up in the Dyson classes and, as we shall explain
below, may be called Friedel oscillations.

The question is whether one can find an appropriate generalization of the CSM whose
ground-state wavefunction possesses the same reflection symmetry property as the JPD of
chiral ensembles. The answer is known to be affirmative. Indeed, one can write down an
integrable one-dimensional model with inverse-square interaction, reflection symmetry and
special single-particle potential centred at zero having the required ground state. It is known
as the BC-type CSM in the literature [12]. Due to the presence of the mirror boundary and
localized single-particle potential (an impurity), the model lacks translational invariance and
the resulting ground-state density is not uniform. In particular, the density profile develops
the Friedel oscillations far enough from the impurity. Accordingly one has a unique example
of integrable strongly interacting models that exhibit Friedel phenomena. That gives one a
possibility to gain the exact information on the amplitude decay rate, spectral characteristics
and phase shifts of the Friedel oscillations in the interacting system. Despite the proved
integrability, explicit form of the correlation functions of the BC-CSM with generic coupling
constant were not established, except for some partial results [11, 13–15].

The purpose of this paper it to fill this gap for rational values of the coupling
constant. To this end we employ the recently developed approach based on the replica trick
[16–18]. It was previously tested on the pair correlation function of the ordinary A-CSM [19],
where it perfectly agrees with the exact results of Haldane [20] and Ha [21] for any rational
coupling constant. The idea is to explore the relation with the RMEs, where the replica
trick was found to be accurate in the asymptotic regime. We thus develop first the fermionic
replica approach to the chiral symmetry classes of RMEs. Not surprisingly, we are able
to reproduce the asymptotic behaviour of the known DoS profiles for chiral RMEs. We
then extend the treatment away from the RMEs values of the coupling constant and obtain
closed analytic results for any rational two-body coupling constant λ and any impurity phase
shift.

We found that for rational values of λ = p/q (p, q coprime), the spectrum of the Friedel
oscillations contains exactly p harmonics, corresponding to 2kF , 4kF , . . . , 2pkF density
oscillations. The lth harmonic (l = 1, . . . , p) decays algebraically as θ−l2/λ, where θ is
the distance from the impurity. The amplitudes of the harmonics depend on the number, l,
and the coupling constant, λ, but are not sensitive to the strength and details of the impurity
expressed through a phase shift, ν. Moreover, the harmonics amplitudes are closely related
to those of the two-point correlation function of the homogenous A-CSM. We provide a
conformal field theory account for this fact. The impurity phase shift, ν, affects only phases
of the harmonics in the asymptotic regime. We explicitly show that the relation between the
total charge expelled by the impurity and the asymptotic phase shifts, known as the Friedel
sum rule, holds for the interacting system. We also compute the distribution of the locus of the
particle nearest to the mirror boundary point for the BC-CSM at generic values of the coupling
constants.



Correlation functions of the BC Calogero–Sutherland model 3139

The paper is organized as follows: in section 2 we briefly introduce chiral ensembles and
develop the appropriate fermionic replica σ -models. Section 3 is devoted to the introduction
and replica treatment of the BC-CSM. In section 4 we perform the analytical continuation
and the replica limit and extract the density profile. In section 5 we compare this result with
the effective conformal field theory description. In section 6 we compute the nearest particle
distribution. A summary and discussions are provided in section 7. Technicalities of the
calculations are relegated to the two appendices.

2. Chiral circular ensembles

A circular RME is defined as an ensemble of unitary matrices U representing a Riemannian
symmetric space D, stochastically distributed according to the Haar measure dU of D.
Expressing a symmetric space as a coset D = G/H with a compact Lie group G and H ⊂ G,
the Cartan mapping G → G/H, g �→ U(g) is as shown in the table below:

Class G H U(g)

A(CUE) U(N) 1 g

AI(COE) U(N) O(N) gT g

AII(CSE) U(2N) Sp(2N) gDg

AIII(chCUE) U(N + N ′) U(N) × U(N ′) Ig†Ig

BDI(chCOE) SO(N + N ′) SO(N) × SO(N ′) IgT Ig

CII(chCSE) Sp(2(N + N ′)) Sp(2N) × Sp(2N ′) IgDIg

D, B SO(2N), SO(2N + 1) 1 g

C Sp(2N) 1 g

CI Sp(4N) U(2N) Ig†Ig

DIIIe,o SO(4N), SO(4N + 2) U(2N), U(2N + 1) gDg

(1)

Here

J =
[

0 −11N

11N 0

]
I =

[
11N 0
0 −11N ′

]
(2)

(N → 2N,N ′ → 2N ′ for CII and N,N ′ → 2N for CI), and gD = JgT J −1 denotes the
quaternion dual of the matrix g. Out of these twelve classes, the last nonclassical nine possess
chirality [23], i.e. nonzero eigenphases appear in complex conjugate pairs. The JPD of these
nonzero eigenphases

U = V diag(eiθ1 , . . . , eiθN , e−iθ1 , . . . , e−iθN , 1, . . . , 1)V † (3)

for the circular ensemble is given by [22] (0 � θ � π)

P (θ1, . . . , θN ) dθ1 . . . dθN =
N∏

i=1

(
dθi sinc1

θi

2
cosc2

θi

2

)
|�N(cos θ)|β (4)

=
N∏

i=1

(
dyiy

(c1−1)/2
i (1 − yi)

(c2−1)/2)|�N(y)|β yi ≡ sin2(θi/2)

(5)
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where �N is the Vandermonde determinant of the rank N and the constants c1, c2 and β for
all nine chiral ensembles are given in the table below.

D (circular M (F-replica
Class c1 c2 β ν RME) NLσM)

AIII 2(N ′ − N) + 1 1 2 N ′ − N U(N + N ′)/
(U(N) × U(N ′)) U(n)

BDI N ′ − N 0 1 N ′ − N SO(N + N ′)/
(SO(N) × SO(N ′)) U(2n)/Sp(2n)

CII 4(N ′ − N) + 3 3 4 N ′ − N Sp(2(N + N ′))/
(Sp(2N) × Sp(2N ′)) U(2n)/O(2n)

D 0 0 2 −1/2 SO(2N) SO(2n)/U(n)

B 2 0 2 1/2 SO(2N + 1) SO(2n)/U(n)

C 2 2 2 1/2 Sp(2N) Sp(2n)/U(n)

CI 1 1 1 1 Sp(2N)/U(N) Sp(2n)

DIIIe 1 1 4 −1/2 SO(4N)/U(2N) SO(2n)

DIIIo 5 1 4 1/2 SO(4N + 2)/U(2N + 1) SO(2n)

(6)

The JPD equation (5) defined over y ∈ [0, 1] may be comprehensively called Jacobi ensemble.
The constant ν, defined as

ν = c1 + 1

β
− 1 (7)

may be called ‘topological charge’, when the tangent element of a random matrix U in the first
three cases is interpreted as the QCD Dirac operator in even dimensions [6, 8].

The real characteristic polynomial, or so called the fermionic replicated partition function,
for these circular ensembles is defined as

Zn,N(θ) =
∫
D

dU det
(
ei θ

2 − e−i θ
2 U

)n ≡
∫

G

dg det
(
ei θ

2 − e−i θ
2 U(g)

)n
. (8)

After the colour–flavour transformation [23] and the thermodynamic limit where N → ∞,

θ → 0 with their product (denoted by the same θ for the sake of simplicity) fixed finite, it
takes the form

Zn(θ) ≡ lim
N→∞

Zn,N

(
θ

N

)
= θnν

∫
M

du (det u)ν ei θ
2 tr(u+u†) (9)

whereM are the ‘dual’ symmetric spaces of the fermionic nonlinear σ -models which are listed
in table (6). Hereafter we suppress irrelevant normalization constants that go to unity in the
replica limit, n → 0. The derivation of equation (9) from equation (8) for the AIII, BDI and
CII classes is summarized in appendix A. In order to derive equation (9) for symmetry classes
whose pertinent colour–flavour transformations are not immediately available in the literature,
one could also adopt an alternative method of magnifying the origin of the circular ensembles
first (i.e. employing Gaussian ensembles), performing Hubbard–Stratonovich transformation
and taking the thermodynamic limit. For a Gaussian ensemble treatment of the BDI and CII
classes, see [24].

Performing the integration over angular degrees of freedom v of u = v diag (eiφa )v†, one
obtains

Zn(θ) = θnν

∫ 2π

0

n∏
a=1

(dφa eiνφa+iθ cos φa )

∣∣∣∣∣
n∏

a>b

sin

(
φa − φb

2

)∣∣∣∣∣
4/β

. (10)
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This expression is valid for all nine chiral symmetry classes. Note that equation (10) depends
only on β and c1 but not on c2, because we have magnified the vicinity of the origin, θ = 0.
Accordingly the class C gives the same Zn(θ) as B, and the class CI the same as BDI at c1 = 1,
reducing nine symmetry classes of chiral RMEs to seven universality classes. The number
could be further reduced by introducing three universality classes of Laguerre ensembles,
having continuous ν and discrete β = 2, 1, 4.

Consequently, we succeeded in expressing the integration over the initial N-variable JPD,
equation (4), through the n-fold integral, equation (10). We shall discuss its evaluation,
analytical continuation and the replica limit after we introduce the BC-CSM. This replica
treatment was previously performed for the AIII class in [25].

3. BC Calogero–Sutherland model

The generalized Calogero–Sutherland Hamiltonian [12] is defined as

H = −
N∑

i=1

∂2

∂θ2
i

+
∑
α∈�

g|α|
sin2(θ · α/2)

. (11)

Here � is a root system of a Lie algebra in N-dimensional vector space, θ is the vector
(θ1, . . . , θN) and g|α| is a coupling constant depending only on the root length. Quantum
integrability is ensured by these conditions. The ordinary, translationally invariant model
corresponds to the AN−1 root system.

The quantum one-dimensional model of N interacting particles on a semicircle, 0 �
θi � π , where i = 1, . . . , N , with the Hamiltonian

H = −
N∑

i=1

∂2

∂θ2
i

+
λ(λ − 1)

2

N∑
i>j

[
1

sin2 θi−θj

2

+
1

sin2 θi+θj

2

]

+
λ1(λ1 − 1)

4

N∑
i=1

1

sin2 θi

2

+
λ2(λ2 − 1)

4

N∑
i=1

1

cos2 θi

2

(12)

corresponds to the BCN root system, hence called the BC-CSM. As the BCN root system
contains roots of length 1,

√
2, 2, there are three independent coupling constants, λ, λ1, λ2.

This family contains CSMs corresponding to BN(λ2 = 0), CN(λ1 = λ2) and DN(λ1 =λ2 = 0)

root systems as its subfamilies. In addition to the pairwise inverse-square interactions, the
particles interact with their own mirror images (occupying the other semicircle, π � θ � 2π)
and with the two single-particle impurity potentials placed at θ = 0 and θ = π . In what
follows we shall assume the thermodynamic limit, N → ∞, and shall focus on the vicinity
of the impurity at θ = 0. The other impurity may be treated in exactly the same manner. The
model is known to have the following ground-state energy [12]:

H�0 = E0�0 E0 =
N∑

i=1

(
(N − i)λ +

λ1 + λ2

2

)2

(13)

and the ground-state wavefunction

�0(θ1, . . . , θN) =
N∏

i=1

(
sinλ1

θi

2
cosλ2

θi

2

)
�N(cos θ)λ. (14)

The absolute square of the ground-state wavefunction coincides with the JPD of the chiral
RMEs (4) [26], through a change of the coupling constants

λ = β/2 λ1 = c1/2 λ2 = c2/2. (15)
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Note that equation (14) is not restricted to the special values of β, c1, c2 listed in table (6).
The energy and wavefunctions of the excited states were studied in [27–30].

The particle density is defined as

〈ρ(θ)〉 ≡
〈

N∑
j=1

δ(θ − θj )

〉
=

√
y(1 − y)

〈
N∑

j=1

δ(y − yj )

〉
(16)

where y ≡ sin2(θ/2). The angular brackets denote ground-state expectation values, or
equivalently averaging over the normalized JPD, equations (4) and (5), for the first and
second equalities correspondingly. One may then employ the replica trick to write

N∑
j=1

δ(y − yj ) = lim
n→0

1

nπ
Im

d

dy

N∏
j=1

(y − yj − iε)n. (17)

As a result, one obtains

〈ρ(θ)〉 =
√

y(1 − y) lim
n→0

1

nπ
Im

d

dy
Zn,N (y − iε)

∣∣∣∣
y=sin2(θ/2)

(18)

where the ‘replicated partition function’ is defined as

Zn,N(y) =
∫ 1

0

N∏
i=1

(
dyiy

λ1−1/2
i (1 − yi)

λ2−1/2(y − yi)
n
)
(�N(y)2)λ. (19)

Baker and Forrester [31] have noted the integral equality due to Kaneko [32] and Yan
[33], which we suggestively call the ‘generalized colour–flavour transformation’. With its
help, one may express the partition function in the following way:

Zn,N(y) =
∫
C

n∏
a=1

(
dxax

λ1+λ2+1
λ

−2
a (1 − xa)

− λ2+n−1/2
λ

[
xa(1 − yxa)

1 − xa

]N
)

(�n(x)2)1/λ. (20)

The integration contour C encircles the cut between xa = 0 and xa = 1. The general form of
the integral identity is given in appendix B. So far no approximation has been made. Now we
pass to the thermodynamic limit, N → ∞, and magnify the vicinity of the θ = 0 impurity.
To this end we rescale the variable as θ → θ/N and correspondingly y � θ2/(4N2). By
redefining the integration variables as xa = 1 − 2iNθ−1 eiφa and taking the thermodynamic
limit, N → ∞, one finds (see appendix B for details)

Zn(θ) ≡ lim
N→∞

Zn,N

(
θ

N

)

= θn(
λ1
λ

+ 1
2λ

−1)

∫ 2π

0

n∏
a=1

(
dφa ei( λ1

λ
+ 1

2λ
−1)φa+iθ cos φa

)[
n∏

a>b

sin2

(
φa − φb

2

)]1/λ

.

(21)

One may introduce notation

ν = λ1

λ
+

1

2λ
− 1 (22)

to note the exact coincidence with the σ -model representation of the chiral RMEs,
equation (10), provided that the coupling constants are related via equation (15). The important
difference is that the BC-CSM representation in the form of equation (21) is not restricted to
the RMEs values λ = 1/2, 1, 2 and special values of the topological charge, ν.



Correlation functions of the BC Calogero–Sutherland model 3143

4. Analytic continuation and replica limit

Consider the n-fold integral

Zn(θ) = θnν

∫ 2π

0

n∏
a=1

(
dφa eiνφa+iθ cos φa

) [
n∏

a>b

sin2

(
φa − φb

2

)]1/λ

. (23)

One may stretch the integration contour from the unit circle in the complex plane of za = eiφa

into two lines parallel to the imaginary axis with Re za = ±1. The original integral,
equation (23), splits into the sum of n terms with l integrals having Re za = −1 and remaining
n − l ones Re za = 1; here l = 1, . . . , n. The further progress is made possible in the
asymptotic limit, θ � 1. In this case, the integrals are dominated by the vicinities of the
saddle points za = ±1 and thus may be evaluated employing the Selberg integral. This
strategy was described in details in [16–19]. Proceeding this way, one finds for the replicated
partition function

Zn(θ) = θnν einθ

n∑
l=0

F l
n(λ) eiπνl−2ilθ 2− 2l2

λ (iθ)−
n−l

2 (1+ n−l−1
λ

)(−iθ)−
l
2 (1+ l−1

λ
) (24)

where we have omitted a normalization constant that goes to unity in the replica limit, n → 0
and, following [16–19], introduced the notation

F l
n(λ) ≡

(
n

l

) l∏
a=1

�(1 + a/λ)

�(1 + (n − a + 1)/λ)
. (25)

Employing the observation that F l
n(λ) ≡ 0 for l > n, one may extend summation over l in

equation (24) to infinity and then perform the analytic continuation n → 0. As a result, one
finds via 〈ρ(θ)〉 = limn→0(πn)−1 Im ∂θZn(θ) (cf equation (18)),

〈ρ(θ)〉 = 1

π

[
1 + 2

∞∑
l=1

dl(λ)

(2θ)l
2/λ

cos

(
2lθ − lπ

(
ν +

1

2
− 1

2λ

))]
(26)

where

dl(λ) ≡ (−1)l

2l2/λ

l∏
a=1

�(1 + a/λ)

�(1 − (a − 1)/λ)
. (27)

Equation (26) for the asymptotic of the ground-state density of the BC-CSM is the central
result of this paper. For the integer values of the coupling constant, λ, it may be extracted
from the expressions derived by Baker and Forrester [31], see also [15].

We remark that each term in equation (26) is the one with the lowest power in θ−1 among
all terms carrying the same frequency 2l. This corresponds to truncating all contributions from
the descendent fields in the conformal description, see the next section. One could compute
these secondary terms, subleading in θ , by performing a perturbative expansion around each
saddle point with the help of the loop equations [18].

5. Conformal field theory description

By comparing the one-particle correlation function of the BC-CSM (26) with the equal-time
two-particle correlation function of the ordinary A-CSM [19, 21]

〈ρ(θ)ρ(0)〉 = 1

(2π)2

[
1 − 1

2λθ2
+ 2

∞∑
l=1

dl(λ)2

θ2l2/λ
cos(2lθ)

]
(28)
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one notes that it is expressed through the very same coefficients dl(λ), equation (27). It is
thus clear that the harmonics amplitudes, dl(λ), are properties of the homogenous interacting
system and not of the localized impurity. As explained below, this result could be anticipated
from the effective conformal field theory description. The latter is capable of predicting the
low-energy properties of the system apart from numerical values of the coefficients.

Based on the finite-size scaling analysis, Kawakami and Yang [34] identified the low-
energy effective theory of the CSM in the thermodynamic limit to be the c = 1 Gaussian
conformal field theory at radius R = √

λ/2, either nonchiral (A-CSM)

L = 1

2π
∂z�∂z̄� �(z, z̄) = φ(z) + φ̄(z̄) � ≡ � + 2πR (29)

or chiral (BC-CSM) [14, 26]. Namely, they have found the density operator should have zero
winding number. It does not have a definite conformal dimension, and therefore is expanded
in terms of primary and secondary operators whose left- and right-moving vertex momenta
are equal. Here we shall consider only contributions from the U(1) current and the primary
fields (vertex operators with charges allowed by the compactification (29)),

ρ(z, z̄) = ρ0

[
b(∂zφ(z) + ∂z̄φ̄(z̄)) +

∞∑
l=−∞

dl eil(z+z̄) eilφ(z)/R eilφ̄(z̄)/R

]
(30)

where the expansion coefficients, b and dl(=d−l), are not determined from the conformal
field theory. Neither are the oscillation factors eil(z+z̄), which are set by hand to describe the
transport of l pseudo-particles [21] from the left Fermi point (−kF = −1 by normalization)
to the right Fermi point (kF = 1) [34]. We have factored out ρ0 such that the constant term
carries d0 = 1. The propagator and the vertex correlator are given by

〈φ(z)φ(z′)〉 = −1

4
log(z − z′) 〈 eilφ(z)/R eil′φ(z′)/R〉 = δl,−l′

(z − z′)l2/(4R2)
. (31)

The coefficient in the second equation is a matter of convention and reflects a particular
choice of the ultraviolet regularization. Another choice of the regularization would change
coefficients dl , but not the final result. Employing equations (30) and (31), one obtains for the
equal-time two-particle correlation function of the A-CSM (we denote z = θ + iτ )

〈ρ(θ + i0)ρ(θ ′ + i0)〉 = ρ2
0

[
− b2

2(θ − θ ′)2
+

∞∑
l=−∞

d2
l

e2il(θ−θ ′)

(θ − θ ′)l2/(2R2)

]
. (32)

Comparing this expression with equation (28), one finds that the b = 1/
√

λ [21], while
dl = dl(λ), cf equation (27). Let us consider now the BC-CSM and concentrate on the
case without the phase shift for simplicity. The Dirichlet boundary condition at Re z = 0 is
translated into the open boundary bosonization rule [35]

φ(z) = −φ̄(z) for Im z < 0. (33)

As the right mover is identified as (−1) times the left mover at the mirror-imaged point, there
exists a nonzero matrix element between the left- and right-moving vertex operators

〈eilφ(z)/R eil′φ̄(z̄′)/R〉 = δl,l′

(z + z̄′)l2/(4R2)
. (34)

As a result, the mean density of the BC-CSM becomes nontrivial,

〈ρ(θ + i0)〉 = ρ0

∞∑
l=−∞

dl

e2ilθ

(2θ)l
2/(4R2)

. (35)
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It is in exact agreement with equation (26) if one disregards the phase shift. The phase shift
may also be included in the conformal description by shifting the identification of the right
and left movers, equation (33), by a constant factor: −π(ν + 1/2 − 1/(2λ)).

We found that knowledge of the asymptotic behaviour of the correlator of the homogenous
A-CSM, equation (28), supplemented by the conformal field theory description is, in principle,
sufficient to predict the BC-CSM correlation function, equation (26). This agreement indicates
the fact that the ultraviolet property of the field that is responsible for the normalization of
vertex operators are not affected by the presence or absence of the boundary. Well anticipated
as it is, we nevertheless consider this fact to be worth verifying, as done in this paper. This
fact can be put on a further test by computing the asymptotics of, e.g., two-particle correlation
function for the BC-CSM, though it is technically more challenging. We could as well
reverse the logic and conjecture the asymptotically expanded form of any p-point correlation
function of density operators for the A-CSM (p � 3) or for the BC-CSM (p � 2), by using
equations (30), (31) and (27).

6. Nearest particle distribution

Another quantity of interest in the theory of interacting electrons is the probability E[s′, s]
of finding no particle within an interval [s′, s] or the particle spacing distribution p(s) that
is a derivative of the former. In the context of spin chains a similar quantity was recently
discussed in [36]. For nonchiral as well as chiral RMEs, Tracy and Widom [37] has developed
Mehta’s computation [3] of E[s′, s] as a Fredholm determinant into a systematic and powerful
method. As their method determines E[s′, s] as a solution (τ function) to a transcendental
equation of Painlevé type relies upon the orthogonal polynomials, its validity is necessarily
limited to λ = 1/2, 1, 2. On the other hand, E(s) ≡ E[0, s] for the chiral RMEs has been
computed by an alternative and far simpler ‘shifting’ method [5, 7, 13, 38, 39] as explained
below. We show that with a help of the generalized colour–flavour transformation, this method
is applicable also to the BC-CSM at generic values of the coupling constants. Consider for a
moment λ1 = n + 1/2, where n = 0, 1, 2, . . . is an integer and λ2 = 1/2. As we are interested
in the universal behaviour in the vicinity of the reflection point θ = 0, the restriction on λ2 is
irrelevant. The probability of having no particle within an interval 0 � θ � s, or 0 � y � Y

with Y = sin2(s/2), is defined as

EN(s) = const
∫ 1

Y

N∏
i=1

(
dyiy

n
i

)
(�N(y)2)λ. (36)

The constant should be chosen to ensure EN(0) = 1. By shifting and rescaling the integration
variable as y → (1 − Y )y + Y , one obtains

EN(s) = const (1 − Y )(1+n)N+λN(N−1)

∫ 1

0

N∏
i=1

[
dyi

(
yi +

Y

1 − Y

)n]
(�N(y)2)λ. (37)

Now we apply the generalized colour–flavour transformation (20) to reexpress EN(s) as an
n-fold integral,

EN(s) = const (1 − Y )(1+n)N+λN(N−1)

×
∫
C

n∏
a=1


dxax

2
λ
−2

a (1 − xa)
− n

λ

[
xa

(
1 + Y

1−Y
xa

)
1 − xa

]N

 (�n(x)2)1/λ. (38)
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We finally rescale s → s/N; Y → s2/(4N2) and take the thermodynamic limit. Following
the same procedure that lead from equation (20) to (21), one finds

E(s) ≡ lim
N→∞

EN

( s

N

)

= const e− λ
4 s2

sn(1− 1
λ
)

∫ 2π

0

n∏
a=1

(
dφa ei( 1

λ
−1)φa+s cos φa

) [
n∏

a>b

sin2

(
φa − φb

2

)]1/λ

.

(39)

This exact result has previously been derived from Laguerre (chiral Gaussian) ensembles at
arbirtary λ and at λ1 = n + 1/2 [13].

To compute the asymptotics of E(s) for s � 1, one can relax the restriction on λ1, by
first evaluating the n-fold integral (39) by the saddle point method and then performing the
analytical continuation n → λ1 − 1/2. In the large-s limit we pick only the contribution
of the replica-symmetric saddle point φa = 0, since the contribution of all other saddle
points is exponentially smaller (the difference with the previous computation is that s enters
equation (39) without imaginary unit). This way Forrester [13] has derived the asymptotic
(s � 1) result

E(s) = const s
n
2 − n(n+1)

2λ e− λ
4 s2

ens

= const s−ν(λ1− 1
2 ) e− λ

4 s2+(λ1− 1
2 )s (40)

where ν is the topological charge defined by equation (22). The Gaussian factor exp(−λs2/4)

could be anticipated from the mean-field treatment of the classical logarithmic gas [36]. The
other factors in the asymptotic expression equation (40) could not be found in any simpler
way, to the best of our knowledge.

The distribution p(s) of the locus s of the particle nearest to the reflection point is given
by p(s) = −∂sE(s). In the other limiting case, s  1, p(s) is determined by the interaction
of the particle closest to the reflection point to its own mirror image. Inspecting equation (5)
one immediately finds p(s) ∝ s2λ1 .

7. Discussions

Let us now take a closer look at our main result, equation (26). The constant term on its rhs,
ρ0 = 1/π , represents the uniform density of particles (N particles within [0, π]) far away
from the impurity. It may be traced back to the replica symmetric contribution (all n integrals
are taken at za = −1 saddle point) to the partition function. The decaying (as θ → ∞)
oscillatory terms on the rhs of equation (26) are the Friedel oscillations of the particle density
induced by the mirror boundary and the impurity potential. These terms may be identified
as the replica symmetry broken contributions to the partition functions (l integrals are taken
at the ‘wrong’ saddle point, za = 1). In general, there is an infinite number of harmonics
(unlike a single ‘2kF ’ harmonic in the noninteracting system!) in the oscillation spectrum.
Since dl ∝ exp(λ−1l2 ln l) for l � 1, the sum over harmonics on the rhs of equation (26) is, in
general, not convergent. It is not clear to us at the moment, whether there is a consistent
resummation scheme. There is, however, an important class of the parameters, where
equation (26) is mathematically rigorous.

For any rational coupling constant λ = p/q the coefficient dl(p/q) ≡ 0 for l > p and
therefore the sum terminates after exactly p oscillatory components. One finds that, in addition
to the usual 2kF Friedel oscillation, the system possess 4kF , . . . , 2pkF oscillatory components
of the density (in the unit kF = 1 accepted here). This fact might be expected from the form
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of the density–density response function of the homogenous A-CSM [20, 21]. However, the
algebraic decay rate of the harmonics could not be determined employing linear response of
the A-CSM. Indeed, the latter predicts that the lth harmonic decays as θ−2l2/λ+1, while the
correct decay rate is θ−l2/λ. Note that for noninteracting particles, λ = 1 and thus l = 1, both
ways give the correct one-dimensional decay of the 2kF Friedel oscillations: θ−1. For any
interacting system, λ �= 1, the linear response is bound to fail in the asymptotic regime. These
observations was already made in the Tomonaga–Luttinger liquid literature [40, 41]. Now we
can confirm them having the exactly solvable model system.

In the BC-CSM one finds not only the decay law, but also the relative amplitudes of the
harmonics: coefficients dl(λ), equation (27). Note that these amplitudes are determined by
the interaction strength, λ, only and are independent of the impurity strength, λ1. This is due
to the fact that the mirror boundary condition induces oscillations of the maximal possible
amplitude. The additional single-particle potential centred at θ = 0 and characterized by λ1

changes the phase of the oscillations only. The entire information about the impurity strength,
λ1, is incorporated in the parameter ν, equation (22). In the asymptotic regime, the latter
affects the phase of the Friedel oscillations only and therefore may be associated with the
impurity phase shift. (Unlike the leading order, the amplitudes of subleading perturbative
corrections in negative powers of θ do depend on the phase shift, ν.)

To verify equations (26) and (27) one may compare them with the available exact
DoS of the chiral RMEs (see [42] and references therein). Employing Hankel’s asymptotic
expansion of the Bessel function, one may check that these asymptotic perfectly agree with
equations (26) and (27). One may also note that for D, B and C symmetry classes we
have obtained the exact rather than the asymptotic results. This coincidence is due to the
Duistermaat–Heckman localization theorem [43, 44]. We see that having unitary symmetry
class, β = 2, is not sufficient to satisfy the Duistermaat–Heckman theorem. One should
also have the special value of the topological charge, ν = ±1/2, to secure cancellation of all
higher-order perturbative corrections [25].

One may define the total charge attracted (expelled) by the impurity to (from) the region
near θ = 0 as

Q ≡
∫ ∞

0
dθ(ρ(θ) − ρ0) (41)

where ρ0 = 1/π is the uniform asymptotic density. For the chiral RMEs, where the exact
expressions including small θ region are available, the result is (cf equation (26))

Q = −1

2

(
ν +

1

2
− 1

2λ

)
= 1

4
− λ1

2λ
. (42)

Note that the attracted charge depends both on the impurity amplitude, λ1, and the interaction
strength, λ, reflecting the fact that the impurity is screened due to the interactions. The pure
mirror boundary, without the single-particle potential attracts quarter of a particle irrespective
to the interaction strength. Equation (42) is a manifestation of the famous Friedel sum rule:
the total expelled charge is equal to the impurity phase shift (divided by 2π); the latter also
determines the phase of the density oscillations far from the impurity. We conjecture, in
accordance with the earlier works [45], that equation (42) is valid for any values of λ and λ1.
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Appendix A. σ-model derivation via colour–flavour transformation

We first consider the simplest case AIII with ν = 0. The Grassmannian U(2N)/(U(N) ×
U(N)) is a complex Kähler manifold, and its unitary matrix representative U in table (1) is
conveniently parametrized by the complex stereographic coordinate Zij , i, j = 1, . . . , N , as

U = Ig†Ig = Iγ Iγ −1 γ =
[

1 Z

−Z† 1

]
Z ∈ CN×N I =

[
1 0
0 −1

]
. (A1)

The Kähler potential k(Z, Z̄) = tr log(1 + ZZ†) leads to the Haar measure

dU =
∏N

i,j=1 d2Zij

det(1 + ZZ†)2N
. (A2)

The replicated partition function then reads

Zn,N(θ) =
∫

U(2N)/(U(N)×U(N))

dU det
(
ei θ

2 − e−i θ
2 U

)n

=
∫

CN×N

∏
d2Z

det(1 + ZZ†)2N
det

(
ei θ

2 − e−i θ
2 Iγ Iγ −1

)n

=
∫

CN×N

∏
d2Z

det(1 + ZZ†)2N+n
det

(
ei θ

2 γ − e−i θ
2 Iγ I

)n
. (A3)

We introduce a set of (N × n)-component independent Grassmannian numbers
ψa

i , χa
i , ψ̄a

i , χ̄
a
i , i = 1, . . . , N, a = 1, . . . , n, to exponentiate the determinant (Iγ I = γ †),

Zn,N(θ) =
∫

dψ dψ̄ dχ dχ̄

∫
CN×N

∏
d2Z

det(1 + ZZ†)2N+n
exp

(
[ψ̄χ̄]

(
ei θ

2 γ − e−i θ
2 γ †) [

ψ

χ

])
.

(A4)

Now we employ Zirnbauer’s colour–flavour transformation [23]∫
CN×N

∏
d2Z

det(1 + ZZ†)2N+n
exp

(
ψ̄a

i Zijχ
a
j − χ̄ a

i Z
†
ijψ

a
j

) =
∫

U(n)

du exp
(
ψ̄a

i u
abψb

i + χ̄ a
i u†abχb

i

)
(A5)

to obtain

Zn,N(θ) =
∫

dψ dψ̄ dχ dχ̄

×
∫

U(n)

du exp
((

ei θ
2 − e−i θ

2
)
(ψ̄ψ + χ̄χ) +

(
ei θ

2 + e−i θ
2
)
(ψ̄uψ + χ̄u†χ)

)

=
∫

U(n)

du det

(
cos θ + i sin θ

u + u†

2

)N

. (A6)

We stress that no approximation has been made in the above procedure.
In the thermodynamic limit, N → ∞ and θ → 0, one has cos θ � 1 and sin θ � θ . As a

result, the determinant in equation (A6) may be exponentiated:

Zn(θ) ≡ lim
N→∞

Zn,N

(
θ

N

)
=

∫
U(n)

du ei θ
2 tr(u+u†). (A7)
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One can repeat the above procedure for the BDI and CII classes. The parametrization
(A1) of the real and quaternionic Grassmannian manifolds, SO(2N)/(SO(N) × SO(N))

and Sp(4N)/(Sp(2N) × Sp(2N)), involves N × N real and quaternion-real matrices Z,
instead of complex. The colour–flavour transformation trades the integrations over these
‘coloured’ variables Z with the ones over ‘flavoured’ variables u that are antisymmetric and
symmetric unitary matrices, respectively (straightforward as they are, such types of colour–
flavour transformation have yet to be exhibited explicitly in the literature, to the best of our
knowledge). Accordingly, the integration domain of the transformed partition function (A6)
becomes antisymmetric unitary matrices (U(2n)/Sp(2n)) and symmetric unitary matrices
(U(2n)/O(2n)), with the rest being unaltered. Inclusion of nonzero ν is straightforward by
considering a rectangular Z. It merely shifts the the power of the determinant in the measure
(A2) by ν, and modifies equation (A7) into equation (9) in the thermodynamic limit.

For the B-D and C or DIII and CI classes, one utilizes the colour–flavour transformation
between the orthogonal or symplectic group and the associated dual symmetric space
parametrized by antisymmetric or symmetric complex matrices, respectively [23, 46, 47].

Appendix B. Generalized colour–flavour transformation

Kaneko [32] (see also Yan [33]) has derived the following remarkable integral identity:

Zn,N(t) = 1

SN(�1 + n,�2, λ)

∫ 1

0

N∏
i=1

(
dyiy

�1
i (1 − yi)

�2(yi − t)n
)
(�N(y)2)λ

= 1

Sn(V1, V2, 1/λ)

∫
C

n∏
a=1

(
dxax

V1
a (1 − xa)

V2(1 − txa)
N
)
(�n(x)2)1/λ (B1)

where the constants are related as

V1 = �1 + �2 + 2

λ
+ N − 2 V2 = −�2 + n

λ
− N. (B2)

The normalization constant Sk(a, b, c) is given by the Selberg integral

Sk(a, b, c) =
k−1∏
j=0

�(a + 1 + cj)�(b + 1 + cj)�(1 + c(j + 1))

�(a + b + 2 + c(k + j − 1))�(1 + c)
. (B3)

The integration contour C encircles the cut between xa = 0 and xa = 1. In our case
(cf equation (19))

�1,2 = λ1,2 − 1

2
V1 = λ1 + λ2 + 1

λ
+ N − 2 V2 = −λ2 + n − 1/2

λ
− N. (B4)

We call identity (B1) fermionic replica ‘generalized colour–flavour transformation’. Indeed,
for the RMEs values of the parameters (λ = 1/2, 1, 2 and special values of λ1,2) equation (B1)
essentially coincides with the fermionic replica version of Zirnbauer’s colour–flavour
transformation [10, 23], after proper parametrization of the symmetric space elements and
integration out of the irrelevant angles. The questions whether there is a geometrical ‘dual pair’
interpretation of equation (B1) for arbitrary parameters, and whether there is a supersymmetric
(say for rational λ) or bosonic replica analogue, are currently open.

In the large-N limit we collect all the terms having the Nth power into
exp

[−N
∑n

a=1 S(xa, t)
]
, where

S(x, t) = −log(1 − tx) − log x + log(1 − x). (B5)
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We then look for the stationary points of the ‘action’ S(x) given by solutions of ∂xS = 0. A
simple algebra gives for the stationary points

x± = 1 ± i

√
1 − t

t
. (B6)

We then magnify the vicinity of t = 0 by introducing θ as t = sin2(θ/(2N)) � θ2/(2N)2

and changing the integration variable xa to φa as

xa = 1 − i

√
1 − t

t
eiφa . (B7)

The two saddle points (B6) are at φa = 0, π . Taking the limit N → ∞, one obtains for the
action NS(xa, t) → −iθ cos φa . A straightforward algebra yields

(�n(x)2)1/λ → θ− n(n−1)

λ

n∏
a=1

ei n−1
λ

φa

[
n∏

a>b

sin2

(
φa − φb

2

)]1/λ

. (B8)

The closed contour C in the xa-plane can be taken to be a circle, so that φa ∈ [0, 2π]. As a
result, one obtains equation (21).
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